登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

在线投稿专家审稿编辑办公咨询评价
首页>《中国测试》期刊>本期导读>基于CEEMDAN和1.5维谱的滚动轴承早期故障诊断方法

基于CEEMDAN和1.5维谱的滚动轴承早期故障诊断方法

443    2019-02-28

¥0.00

全文售价

作者:黄慧杰1, 孙百祎2, 任学平1, 刘淮全2

作者单位:1. 内蒙古科技大学机械工程学院, 内蒙古 包头 014010;
2. 山东交通职业学院泰山校区, 山东 泰安 271000


关键词:滚动轴承;早期故障;自适应白噪声的完备总体经验模态分解;1.5维谱


摘要:

针对滚动轴承早期故障难以识别的问题,提出一种自适应白噪声的完备总体经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和1.5维谱相结合的滚动轴承故障诊断方法。该方法首先运用CEEMDAN对振动信号进行分解,得到一系列IMF分量,然后根据峭度准则以及相关系数准则提取一个包含主要故障信息的IMF分量,最后对提取的IMF分量进行1.5维谱分析,通过分析谱图中突出成分以确定轴承故障类型。利用仿真信号和工程实验数据对该方法进行分析验证,所得出结果的谱图均比用单一方法得出的谱图清晰,充分证明该方法在滚动轴承早期故障诊断中的优势。


Early fault diagnosis of rolling bearing based on CEEMDAN and 1.5 dimension spectrum
HUANG Huijie1, SUN Baiyi2, REN Xueping1, LIU Huaiquan2
1. Institute of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China;
2. Taishan Campus of Shandong Transport Vocational College, Taian 271000, China
Abstract: In order to solve the problem that early failure of rolling bearings information are difficult to identify, a new method of rolling bearing fault diagnosis based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and 1.5 dimension spectrum is proposed. Firstly, the CEEMDAN method is used to decompose the vibration signal, a signal of a finite number of intrinsic mode component (IMF) is obtained. Then, according to the kurtosis criterion and correlation coefficient criterion of each component, a IMF component containing important fault information is extracted. Finally, the extracted IMF component is analyzed by 1.5 dimension spectrum, fault type of bearing can be determined by analyzing the prominent components in 1.5 dimension spectrum. The method is analyzed and verified by simulation signal and engineering experiment data. The spectrum results obtained are much clearer than those obtained by single method.The advantages of this method in the early fault diagnosis of rolling bearing are fully proved.
Keywords: rolling bearings;incipient faults;CEEMDAN;1.5 dimension spectrum
2019, 45(2):151-156  收稿日期:2017-10-23;收到修改稿日期:2018-02-01
基金项目:国家自然科学基金项目(51565046);内蒙古自治区高等学校科学研究项目(NJZY16154)
作者简介:黄慧杰(1995-),男,山西运城市人,硕士研究生,专业方向为机械设备故障诊断及状态检测
参考文献
[1] 李志星, 石博强. 自适应奇异值分解的随机共振提取微弱故障特征[J]. 农业工程学报, 2017, 33(11):60-67
[2] 任学平, 王朝阁, 张玉皓, 等. 基于双树复小波包自适应Teager能量谱的滚动轴承早期故障诊断[J]. 振动与冲击, 2017, 36(10):84-92
[3] 王建国, 陈帅, 张超. 噪声参数最优ELMD与LS-SVM在轴承故障诊断中的应用与研究[J]. 振动与冲击, 2017, 36(5):72-78
[4] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995
[5] LEI Y, HE Z, ZI Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical Systems & Signal Processing, 2009, 23(4):1327-1338
[6] LEI Y, ZUO M J. Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs[J]. Measurement Science & Technology, 2009, 20(12):125701
[7] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2011:4144-4147.
[8] 张建伟, 侯鸽, 暴振磊, 等. 基于CEEMDAN与SVD的泄流结构振动信号降噪方法[J]. 振动与冲击, 2017, 36(22):138-143
[9] 唐贵基, 王晓龙. 最大相关峭度解卷积结合1.5维谱的滚动轴承早期故障特征提取方法[J]. 振动与冲击, 2015, 34(12):79-84
[10] CHEN L, ZI Y Y, HE Z J, et al. Research and application of ensemble empirical mode decomposition principle and 1.5 dimension spectrum method[J]. Journal of Xian Jiaotong University, 2009, 43(5):94-98
[11] 钟先友, 曾良才, 赵春华. 局域均值分解和1.5维谱在机械故障诊断中的应用[J]. 中国机械工程, 2013, 24(4):452-457
[12] ANTONI J, BONNARDOT F, RAAD A, et al. Cyclostationary modelling of rotating machine vibration signals[J]. Mechanical Systems & Signal Processing, 2004, 18(6):1285-1314
[13] 唐贵基, 王晓龙. 自适应最大相关峭度解卷积方法及其在轴承早期故障诊断中的应用[J]. 中国电机工程学报, 2015, 35(6):1436-1444